
Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Prac-
tice,Cambridge, UK, 11-15th July 2005

REMARKS ON COEFFICIENT DETERMINATION FOR THE STATIONARY
ANISOTROPIC TRANSPORT EQUATION

N. C. ROBERTY
Nuclear Engineering Program PEN/COPPE
Federal University of Rio de Janeiro, UFRJ,
C.P. 68509, 21945-970, Rio de Janeiro, RJ,Brazil
e-mail: nilson@con.ufrj.br

Abstract - The problem of simultaneous spatial determination of the absorption and scattering coef-
ficients in the stationary linear one velocity Boltzmann transport equation via boundary measurements
is investigated. The original first-order problem is shown to be equivalent to a second order self-adjoint
problem. Then, I introduce an a priori operator K that can be different from the scattering but gives
compactness to the problem. The associated eigenvalue problem generates a dense and complete set of
eigenfunctions in the Hilbert space where the problem is defined. It is shown that the traces of eigen-
functions form a minimal system in the trace boundary space and that appropriate boundary values may
be chosen in order to establish a bi-orthogonal set. Finally, the identifiability for the extinction and
scattering coefficients is suggested in a very simplified way.

1. INTRODUCTION
We consider the boundary value problem for the linear stationary Boltzmann Transport equation{

ω · ∇φ(ω, x) + q(x)φ(ω, x)−Kf [φ](ω, x) = 0 in S × Ω ;
φ(ω, σ) = g−(ω, σ) on Σ−. (1)

where Ω is a bounded and convex domain of RN , N ≥ 2 , S = SN−1 denotes the unit sphere of RN ,
Σ± = {(ω, σ) ∈ S × ∂Ω : ±ω · ν(σ) > 0} is the influx (outflux) boundary of S ×Ω, q(x) is the extinction
coefficient due to absorption or scattering and Kf is the integral operator

Kf [φ](t, ω, x) =
∫

S

f(x, ω′ · ω)φ(t, ω′, x)dω′,

which describes the gain of particles in direction ω due to scattering from other directions. The function
f is frequently expanded in an absolutely and uniformly convergent series

f(x, ω · ω′) =
∞∑

k=1

2k − 1
4π

qk(x)Pk−1(ω · ω′) (2)

where Pk−1 is the Legendre polynomials of degree k − 1.
The combination of extinction and scattering defines the operator R−1, R−1[φ] = q(x)φ −Kf [φ] in

S × Ω which will be inverted for appropriate values of the coefficient q and f .
This solution φ defines the flux at the outflux boundary Σ+

φ = g+on Σ+ ;

and the Cauchy data for the problem

CR = {(g−, g+) on Σ− × Σ+}

characterizes the graph for the albedo operator (the influx to outflux mapping) AR.
In the inverse problem we ask if it is possible to determine the coefficients of operator R, and the

functions q and f from the a priori knowledge of the albedo operator. The problem is the investigation
of the following mapping

Φ : R −→ AR.

Note that when particle gain from scattering is neglected, that is f = 0, this is a transmission tomography
problem, in which the Cauchy data (g−, g+) is the mathematical notation for the collimated source and
detector data used in the x-ray reconstruction of the coefficient q [1]. In this generalized problem,
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additional coefficients qk, k = 1, 2, ... are to be reconstructed by measurements of non-collimated data
which are usually neglected in the transmission problem. In reality, there are at least two-orders of
magnitude between the two kind of data [6] and new technological strategies for the treatment of this
problem are waiting for solutions.

In this work we will see that the first-order eqn.(1) is equivalent to a second order equation and this
introduces a new series of questions similar to that found in the spectral analysis of the inverse scattering
problem [4] and of the inverse heat transfer problem [14]. These analyses are all based on a second order
self-adjoint partial differential equation when the problem is stationary, as in the case in study here. We
will present here a spectral characterization of a second-order equivalent problem for eqn.(1), introducing
a compact formulation and consequently avoiding a continuum spectrum. We also discuss a strategy for
choosing boundary data (g−, g+) that generates a complete set of weight orthonornal functions dense in
the Hibert space of solutions to problem (1) and how this can be used to theoretically ensure a unique
reconstruction of the coefficients.

2. FUNCTIONAL FORMULATION
The appropriated setting for this kind of approach is the space of square integrable functions with

support in the domain S × Ω, the space H = L2(S × Ω) in which the following scalar product is defined
as

(φ, ψ)H =
∫

S×Ω

φ(ω, x)ψ(ω, x) dωdx

Since the formulation introduced here is based on self-adjoint and compact operators, with real func-
tions and discrete spectrum, we will restrict in this work to real functions spaces. In order to define the
domain of the direction ω operator A = ω · ∇, we will need the Hilbert subspace W ⊂ H, with internal
scalar product

(φ, ψ)W =
∫

S×Ω

{φ(ω, x)ψ(ω, x) +A[φ](ω, x)A[ψ](ω, x)}dωdx

We note that
L2(S;W 1,2(Ω)) ⊂W ⊂ H

with dense but not compact embedding. To define the boundary traces for solutions of problem (1) we
will need the spaces

L2(Σ) = L2(Σ; |ω · ν(σ)|dωdσ)

with scalar product

< φ,ψ >Σ=
∫

Σ

|ω.ν(σ)|φ(ω, σ)ψ(ω, σ)dωdσ

and the space W̃ with the following scalar product

< φ,ψ >
W̃

= (φ, ψ)W + < φ,ψ >Σ .

The traces are well defined from W̃ to L2(Σ), L2(Σ+) or L2(Σ−) [2] and so the operators γ± exist, are
continuous and surjective, with γ±(W̃ ) = L2(Σ±). In this situation the trace on the boundary surfaces
Σ± has one right inverse which is the operator that translates values from the boundary to points inside
the domain Ω

t±[g](ω, x) = g(ω, x± τ±(ω, x)ω)

where τ±(ω, x) = sup{t ∈ R;x± tω ∈ Ω} is the distance from x to the boundary following the direction
ω. The function t±[g] is continuous from L2(Σ±) to W̃ and satisfies the property

A[t±[g]] = 0 for all g ∈ L2(Σ±).

Another important fact is that the albedo operator for the problem (1) is adequately defined from
L2(Σ−) to L2(Σ+).

To derive a second order theory which is equivalent to the first-order one, we need to define the unitary
operator for inversion of direction in the Hilbert space H, U [φ](ω, x) = φ(−ω, x) and the projection in
H, P = 1

2 (I + U) which decomposes H in two complementary subspaces

H+ = {φ ∈ H : P (φ) = φ} and H− = {φ ∈ H : P (φ) = 0}

and W̃ in W̃± = W̃ ∩H±.
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We also need to define the inverse of R−1, i.e. the operator

R = (qI +Kf )−1 : H −→ H with

R[φ](ω, x) =
1

q(x)
φ(ω, x) +

∫
S

∞∑
k=1

2k − 1
4π

1
q(x)

qk(x)
q(x)− qk(x)

Pk−1(ω′ · ω)φ(ω′, x)dω (3)

where the coefficient functions q and qk satisfy appropriate restrictions [10]. Sometimes it is also conve-
nient to express the operator R by a divergent series kernel

R[φ](ω, x) =
∫

S

∞∑
k=1

2k − 1
4π

Pk−1(ω′ · ω)
q(x)− qk(x)

φ(ω′, x)dω (4)

3. FIRST AND SECOND ORDER PROBLEMS
We consider the boundary value problem (1) written in a formal operator form: find φ ∈ W̃ such that

T [φ1] = (A+R−1
1 )[φ1] = h1 ∈ H (5)

γ−1 [φ] = g−1 ∈ L2(Σ−) (6)

which has a unique solution in W̃ [5]. This solution defines the albedo operator

AR[g−1 ] = g+
1 ∈ L2(Σ+). (7)

AR is linear and bounded with

|||AR||| = sup{‖ AR[g−1 ] ‖L2(Σ+); ‖ g−1 ‖≤ 1}

We also consider the adjoint boundary value problem: find φ2 ∈ U [W̃ ] = W̃ such that

T ∗[φ2] = (−A+R−1
1 )[φ2] = h2 ∈ U [H] = H (8)

γ+
2 [φ] = g+

2 ∈ L2(Σ+) (9)

which has a unique solution in W̃ [5]. This solution defines the adjoint albedo operator

A∗R[g+
2 ] = g−2 ∈ L2(Σ−) (10)

with is also linear and bounded. For R1 = R2, that is, for direct and adjoint problems with the same
coefficients, the operators AR and A∗R satisfy the following property∫

Σ−
|ω · ν(σ)|g−1 (ω, σ)A∗R[g+

2 ](ω, σ)dωdσ =
∫

Σ+
|ω · ν(σ)|g+

2 (ω, σ)AR[g−1 ](ω, σ)dωdσ (11)

valid for every pair (g−1 , g
+
2 ). If we choose an arbitrary g−1 = U [g+

2 ] = g we obtain that

A∗R = UARU : L2(Σ+) −→ L2(Σ−). (12)

Now, for different coefficients, that is, R1 6= R2, it is not difficulty to show that if φ1 and φ2 are solutions
of (5) and (8), respectively, then∫

S×Ω

(R−1
2 −R−2

1 )[φ1](ω, x)φ2(ω, x)dωdx

=
∫

Σ+
|ω · ν(σ)|[AR1 [g

−
1 ]−AR2 [g

−
1 ]](ω, σ)g+

2 (ω, σ) ωdσ

=
∫

Σ−
|ω · ν(σ)|[A∗R1

[g+
2 ]−A∗R2

[g+
2 ]](ω, σ)g−1 (ω, σ) ωdσ (13)

It is also not difficult to show that T ∗ = UTU , −A = UAU , R = URU and γ+ = Uγ−U on theirs
respective domains. We can formulate the homogeneous boundary values problem for problems (5) and
(8), respectively, by adopting the following transformation

ψ1(ω, x) = φ1(ω, x)− t−[g−1 ](ω, x) = φ1(ω, x)− g−1 (ω, x− τ−(ω, x)ω) (14)
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ψ2(ω, x) = φ2(ω, x)− t+[g+
2 ](ω, x) = φ2(ω, x)− g−2 (ω, x− τ−(ω, x)ω) (15)

in eqns (5) and (8). In this case we obtain

T [ψ1] = (A+R−1
1 [ψ1]) = h1 −R−1

1 [t−[g−1 ]] ∈ H (16)

γ−[ψ1] = 0 (17)

T ∗[ψ2] = (−A+R−1
2 [ψ2]) = h2 −R−1

2 [t−[g+
2 ]] ∈ U [H] = H (18)

γ+[ψ2] = 0 (19)

where the fact that A[t±[g±]] = 0 for all g± ∈ L(Σ±) has been used.
To obtain the respective second order problems, we separate the non homogeneous internal source

problem with homogeneous boundaries, (16) into a even and odd parity source problems ([5],[3],[10]) and
after some manipulations we obtain an

(−AR1A+R−1
1 )[Pu1] = P [h1] ∈ H+ (20)

γ−[(I −R1A)[Pu1]](ω, σ) =
1
2
[g−1 (ω, σ) + g−1 (−ω, σ + τ+(ω, σ)ω)] (21)

γ+[(I +R1A)[Pu1]](ω, σ) =
1
2
[g−1 (−ω, σ) + g−1 (ω, σ − τ−(ω, σ)ω)] (22)

(−AR1A+R−1
1 )[(I − P )u1] = (I − P )[h1] ∈ H− (23)

γ−[(I −R1A)[(I − P )u1]](ω, σ) =
1
2
[g−1 (ω, σ)− g−1 (−ω, σ + τ+(ω, σ)ω)] (24)

γ+[(I +R1A)[(I − P )u1]](ω, σ) =
1
2
[−g−1 (−ω, σ) + g−1 (ω, σ − τ−(ω, σ)ω)]. (25)

Note that u1 and R1Au1 are in W̃ and φ1 = (I −R1A)u1, that is R−1
1 [φ1] = T ∗1 [u1].

We proceed in a similar way with the eqns (18) and obtain

(−AR2A+R−1
2 )[Pu2] = P [h2] ∈ H+ (26)

γ+[(I +R2A)[Pu2]](ω, σ) =
1
2
[g+

2 (ω, σ) + g+
2 (−ω, σ − τ−(ω, σ)ω)] (27)

γ−[(I −R2A)[Pu2]](ω, σ) =
1
2
[g+

2 (−ω, σ) + g+
2 (ω, σ + τ+(ω, σ)ω)] (28)

(−AR2A+R−1
2 )[(I − P )u2] = (I − P )[h2] ∈ H− (29)

γ+[(I +R2A)[(I − P )u2](ω, σ) =
1
2
[g+

2 (ω, σ)− g+
2 (−ω, σ − τ−(ω, σ)ω)] (30)

γ−[(I −R2A)[(I − P )u2]](ω, σ) =
1
2
[−g+

2 (−ω, σ) + g+
2 (ω, σ + τ+(ω, σ)ω)]. (31)

Also here u2 and R2Au2 are in W̃ and φ2 = (I +R2A)u2, that is R−1
2 [φ2] = T2[u2].

We have the following factorization for the second-order symmetric operator LR = −ARA+R−1,

LR = R−1(I +RA)(I −RA) = R−1(I −RA)(I +RA) = T ∗RT = TRT ∗

Equations for the even (20) and odd parity (23) can be added in order to form a unique equation

LR1 [u1] = h1 = T1[φ1] ∈ H (32)

γ−[(I +R1A)u1](ω, σ) = g−1 (ω, σ) = γ−[φ2] (33)

γ+[(I +R1A)u1](ω, σ) = g+
1 (ω, σ − τ−(ω, σ)ω)) = γ+[φ2](ω, σ − τ−(ω, σ)ω)) (34)

The adjoint equations with even (26) and odd parity (29) can receive a similar treatment to give

LR2 [u2] = h2 = T ∗2 [φ2] ∈ H (35)

γ−[(I +R2A)u2](ω, σ) = g−2 (ω, σ − τ−(ω, σ)ω)) = γ−[φ2](ω, σ − τ−(ω, σ)ω) (36)
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γ+[(I +R2A)u2](ω, σ) = g+
2 (ω, σ) = γ−[φ2](ω, σ) (37)

The operator LR defines a symmetric operator which is positive definite and, consequentially the
Friedrichs theorem can be applied [12]. The

dom(LR) = {u ∈ W̃ ;ARAu ∈ H; γ−[(I −RA)u] = γ+[(I +RA)u] = 0}

can be completed in H with the energy scalar product

(u, v)HR
= (RAu, v) + (R−1u, v)H+ < u, v >Σ

to form an energy Hilbert space in which the operator LR is also self-adjoint.The associated norm can
be proved to be equivalent to the norm defined in W for functions in the dom(LR) and with the norm in
W̃ for functions with nonhomogeneous traces. The formulation of the variational principle associated is
straightforward and can be found in [3] and [5].

4. THE SPECTRAL PROBLEM
We can introduce different types of spectral problems associated with the stationary Boltzmann

boundary value problem (1). The first one is the actual spectral problem derived from the transient
form of the equation,which can lead to a non discrete complex spectrum [3]. The second procedure
follows [5]. In order to explore the properties of the operator Lq = A + qI and Kf , [5] shows that the
combination L−1

q Kf forms a compact operator in H that can be left symmetrized to present a discrete
real set of eigenvalues and eigenfunctions [8]. Whilst this is a good procedure in the solution of the direct
problem, in the inverse parameter determination problem it presents a drawback from the fact that the
operator Kf used in the symmetrization is not know a priori, since f is not known. We propose here an
alternative approach based on the a priori knowledge of the operator K : H −→ H which is supposed to
be self-adjoint, positive and injective

K[φ](ω, .) =
∫

S

g(., ω′ · ω)φ(ω′, .)dω′

such that K|x : L2(S) −→ L2(S) is compact, a.e. x ∈ Ω. We consider the following second order
eigenvalue problem: find u ∈ dom(LR) such that

LRu = λKu (38)∫
s×Ω

K[u](ω, x)u(ω, x)dωdx = 1 (39)

It is not difficult to show that the operator L−1
R K is compact [11] and symmetrized by the operator

K. It has an infinite set of real eigenvalues which are orthonormal for the following scalar product

(K[uj ], ui)H = δji. (40)

From the injectivity of K, it is possible to show that there are an infinite set of eigenvalues {λj ; j =
1, 2, ...} and from symmetrization that there are no adjoint eigenfunctions, but each eigenvalue has mul-
tiple eigenfunctions. It can also be verified, with fundamental importance to the inverse problem, that
the set of eigenfunctions is complete and dense in the range of the operator K, and consequently, in the
space H. It is also not difficult to show that if uj is an eigenfunction for the eigenvalue λj , then U [uj ] is
a eigenfunction for the same eigenvalue, that is, the two parity eigenfunctions

u+
j = Puj and u−j = (I − P )uj

satisfy the following eigenvalue problem

LRu
±
j = λjKu

±
j on S × Ω (41)

γ−[(I −RA)u±j ] = γ+[(I +RA)u±j ] = 0
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5. DENSE SETS OF EIGENFUNCTIONS

The eigenfunctions {uj ; j = 1, 2, ...} for the eigenvalue problem

−ARAuj +R−1uj = λjKuj in H (42)

γ−[(I −RA)uj ] = γ+[(I +RA)uj ] = 0 (43)∫
S×Ω

K[uj ](ω, x)uj(ω, x)dωdx = 1 (44)

establish in H an orthonormal set for the weight scalar product

(K[uj ], ui)H =
∫

S×Ω

K[uj ](ω, x)ui(ω, x)dωdx = δji , i, j = 1, 2, .... (45)

Here the eigenvalues are repeated according to the multiplicity of their eigenfunctions. As we have noted,
due to injectivity of the operator K, this set of functions is dense in H.

We are now in position to respond to the fundamental question for the identification problem, that
is, if it is possible, by using only values of the flux at the influx boundary Σ−, to generate a dense set
such as the set of eigenfunctions {uj ; j = 1, 2, ...}. The answer for this question is affirmative and I will
present the proof here.

Let us introduce the boundary spectral data for the pair (R,K), that is:

bsd(R,K) = {(λj , γ
−[uj ]); j = 1, 2, ...} (46)

and the g-problem. Let g be an arbitrary function in L2(Σ−) and ug ∈ W̃ the solution of

−ARAug +R−1ug = 0 in H (47)

γ−[(I −RA)ug](ω, σ) = g(ω, σ) if (ω, σ) ∈ Σ− (48)

γ−[(I +RA)ug](ω, σ) = g(−ω, σ + τ+(ω, σ)ω) if (ω, σ) ∈ Σ+ (49)

We can obtain an explicit generalized Fourier series for the solution ug by multiplying eqn. (47) by
uj , integrate on S × Ω and use (42),(43),(48) and (49) in a straightforward way to obtain

λj

∫
S×Ω

K[uj ](ω, x)ugdωdx =

=
∫

Σ−
|ω · ν(ω)|g(ω, σ)uj(ω, σ)dωdσ +

∫
Σ+

|ω.ν(σ)|g(−ω, σ + τ+(ω, σ)ω)dωdσ

We first note that {(K[ug], uj)H ; j = 1, 2, ...} are the general Fourier coefficients for the function ug

with respect to the systems of functions {uj ; j = 1, 2, ...} and that the series

K[ug] =
∞∑

j=1

(K[uj ], ug)HK[uj ] ∈ H

converges in the norm of H. In this way the formal solution to the g-problem based on this complete
system of eigenfunctions is

ug =
∞∑

j=1

(
1
λj

∫
Σ

|ω.ν(σ)|Ψ(ω, σ)uj(ω, σ)dωdσ)uj (50)

where we have defined

Ψ(ω, σ) =
{

g(ω, σ) if (ω, σ) ∈ Σ−;
g(−ω, σ + τ+(ω, σ)ω) if (ω, σ) ∈ Σ+. (51)

Note that for a pair of operators (R,K), R with coefficients guessed from the identification problem
and K choosed in an such way that gives completeness of the derived system of eigenfunctions (at least
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injective), we can choose a set {gi; i = 1, 2, ...} in a such way that the pairs {(Ψi, uj); i, j = 1, 2, ...)} form
a bi-orthonormal system of functions, [13], in the Hibert space L2(Σ; |ω · ν(σ)|dωdσ)), that is,

< Ψi, uj >Σ=
∫

Σ

|ω.ν(σ)|Ψi(ω, σ)uj(ω, σ) = δij , i, j = 1, 2, ... (52)

Then the respective gi-problem will have formal solution

ugj
=

1
λj
uj , j = 1, 2, ...

and the completeness of the system uj is transferred to the system ugj
. In fact, the system of functions in

the boundary spectral data, that is, the traces on L2(Σ; |ω · ν(σ)|dωdσ) of the functions {uj ; j = 1, 2, ...}
is minimal in the sense of Lewin, Kaczmarz and Steeinhaus [13] and this is the necessary and sufficient
condition for the existence of the bi-orthonormal system {Ψi; i = 1, 2, ...}. It is not difficult to see
this, since if an eigenvalue λj has multiplicty mj , then the mj ’s eigenfunctions {ujm;m = 1, 2, ...,mj}
associated with it have trace on L2(Σ; |ω · ν(ω)|dωdσ) and span a subspace with dimension exactly equal
to mj . Systems of functions linearly independent in the bulk space W̃ are linearly independent in the
trace boundary space L2(Σ; |ω ·ν(σ)|dωdσ) by the continuation property. We finally show by using parity
properties that this set can be constructed with functions {Ψj ; j = 1, 2, ...} related with gj ’s by formula
(51). Note that

P [Ψj ](ω, σ) =
{

1
2 [gj(ω, σ) + gj(−ω, σ + τ+(ω, σ)ω) if (ω, σ) ∈ Σ−;
1
2 [gj(−ω, σ) + gj(ω, σ − τ−(ω, σ)ω) if (ω, σ) ∈ Σ+ (53)

and

(I − P )[Ψj ](ω, σ) =
{

1
2 [gj(ω, σ)− gj(−ω, σ + τ+(ω, σ)ω) if (ω, σ) ∈ Σ−;
1
2 [−gj(−ω, σ) + gj(ω, σ − τ−(ω, σ)ω) if (ω, σ) ∈ Σ+ (54)

and that the boundary space L2(Σ; |ω · ν(σ)|dωdσ) is decomposed by parity into two complementary
subspaces with the scalar product (52) rewritten as

< Ψi, uj >Σ=
∫

Σ

|ω.ν(σ)|(P [Ψi](ω, σ)P [uj ](ω, σ) + (I − P )[Ψi](ω, σ)(I − P )[uj ](ω, σ))dωdσ (55)

since∫
Σ

|ω.ν(σ)|P [Ψi](ω, σ)(I − P )[uj ](ω, σ)dωdσ =
∫

Σ

|ω.ν(σ)|(I − P )[Ψi](ω, σ)P [uj ](ω, σ)dωdσ = 0.

We see that we can choose different gj ’s to generate the even and odd parity functions separately, say, a
gj1 to obtain the even parity bi-orthonormality, and a gj2 for the odd parity, and then add the result to
generate the functions {Ψj ; j = 1, 2, ...}.

6. IDENTIFIABILITY OF COEFFICIENTS
From the eqn.(13)and the fact the first order direct and adjoint problems are related to their respective

second-order problems by φ1 = (I −RA)u1 and φ2 = (I +RA)u2 we obtain the basic identity to be used
in the identification problem∫

Ω

(q2(x)− q1(x))
∫

S

[(I −R1A)u1][(I +R2A)u2]dωdx

−
∫

S×Ω

(
∫

S

[f2(x, ω′ · ω)− f1(x, ω′ · ω)][(I −R1A)u1](ω′, x)dω′)[(I +R2A)u2]dωdx

=
∫

Σ+
|ω · ν(σ)|[AR1 [g1]−AR2 [g1]](ω, σ)g2(ω, σ)dωdσ = 0 (56)

The two problems (1 = direct and 2 = adjoint) by hypothesis have possibly different coefficients with the
same albedo, and so the right hand-side of this equality is zero, independently of the data g1 and g2. By
using the property R−1

1 −R−1
2 = R−1

2 (R2 −R1)R−1
1 , the left hand side of eqn.(56) can be rewritten as∫

S×Ω

(R2 −R1)[T1[u1]](ω, x)T ∗2 [u2](ω, x)dωdx = 0 (57)
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or, explicitly thought the divergent series (4)∫
S×Ω

∫
S

(
∞∑

l=1

2l − 1
4π

(
1

q2(x)− q2l(x)
− 1
q1(x)− q2l(x)

)Pl−1(ω′ · ω))

T1[u1](ω′, x)T ∗2 [u2](ω, x)dω′dωdx = 0 (58)

Since the solutions u1 and u2 are arbitrary and can be made to range over a complete set of linearly
independent functions in W̃ , we see that the two operators must be equal with coefficients { 1

q(x)−ql(x) ∈
L∞(Ω); l = 1, 2, ...}. Since the sequence {ql} converges asymptotically to zero, the two extinction coeffi-
cients, q1 and q2, are also equal.

7. CONCLUSIONS
The simultaneous spatial determination of the absorption and scattering coefficients in the stationary

linear one velocity Boltzmann transport equation via boundary measurements is showed to be possible
in a second order self-adjoint compact spectral problem. An eigenvalue problem associated can be imple-
mented to generate a dense and complete set of eigenfunctions in the Hilbert space where the problem is
defined. The traces of eigenfunctions form a minimal system in the trace boundary space and appropriate
boundary values may be chosen in order to establish a bi-orthogonal set used to show the identifiability
of the coefficients.
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